Thermal Degradation Study of Polymerization of Monomeric Reactants (pmr) Polyimides

نویسندگان

  • W. Xie
  • W.-P. Pan
  • K. C. Chuang
چکیده

A novel PMR polyimides (TMBZ-15) based on substituted benzidines is examined and compared to state-of-the-art PMR-15. The mechanism for the thermal decomposition of two specific PMR polyimides is obtained using TG/FTIR/MS techniques. In order to verify the pathway of polyimide degradation, a pyrolysis/GC-MS technique was employed to evaluate the organic degradation products, particularly the larger components that are destroyed in traditional TG/MS. A proposed degradation mechanism involves two main stages of decomposition, each of which produce a variety of products. The first group includes aromatic hydrocarbons, aromatic amines and nitriles, which correspond to partial fragments of polymer chains. The second group consists largely of fluorene, naphthalene and phenanthrene, which are attributed to the isomerization, rearrangements and cyclizations of the aforementioned pyrolyzates at high temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Thermally Stable Aromatic Polyimides Based on Aromatic Diamine ‎2,5-Bis(3-amino-4-methyl benzene)-1,3,4-oxadiazole (BAMO):‎ Synthesis and Characterization

In current study, the synthesis and characterization of novel thermally stable polyimides (PIs) containing an 1,3,4-oxadiazole moiety based on a diamine, i.e. 2,5-bis(3-amino-4-methyl benzene)-1,3,4-oxadiazole (BAMO), have been reported. The polymers were characterized using FT-IR and elemental analysis (CHN). Thermal and mechanical behaviours of the prepared PIs were studied by thermo-gravimet...

متن کامل

Study on the Thermal Decomposition Kinetics and Calculation of Activation Energy of Degradation of Poly(o-toluidine) Using Thermogravimetric Analysis

Thermo Gravimetric Analysis (TGA) analysis was employed to investigate activation energy (Ea) for the process of degrading of poly(o-toluidine) (POT) applying Horwitz & Metzger, Coats & Redfern and Chan et al., methods. POT was synthesized by chemical oxidative polymerization method using Ammonium per Sulphate (APS) as an oxidant while Dodecylbenzene Sulphonic Acid (DBSA) and sul...

متن کامل

Synthesis, Characterization and Thermal Stability Study of Styrene-based Ionomers I) Programmed Heating Experiments (10 oC/min to 500 oC)

Ionomers are generally described by copolymers having either acrylic or methacylic acid as one component and the other component is mostly either ethylene or styrene. The objective of this research was to study the thermal behaviour and stability of ionomers of styrene with some alkali metal acrylates. These materials have been synthesized by neutralization of the respective copoly...

متن کامل

Preparation of Flame Retardant Polystyrene via In-Situ Bulk Polymerization Method and Evaluation of its Flammability Properties

In this study, in-situ bulk polymerization was investigated for obtaining flame retardant polystyrene (PS). The halogenated and phosphoric compounds were used as flame retardant additives and Perkadox 30 was used as a synergist. The flammability of the PS was evaluated by thermogravimetric analyzer (TGA), limiting oxygen index (LOI) and UL-94 tests. The results show that polymerization process ...

متن کامل

Morphological investigation of Graphene Oxide/ Polyacrylamide super-elastic nanocomposite by a solution polymerization process with enhanced rheological property and thermal conductivity

A series of Graphene Oxide/ Polyacrylamide (GO/PAM) super-elastic nanocomposites with different amounts of Graphene Oxide Nanosheets (GONSs) (0.5, 1, 1.5, and 2 wt. %) were synthesized using an in-situ polymerization in an aqueous medium in this paper. To this end, we proposed a method for obtaining super-elastic nanocomposites with a high dispersion of GONSs in the PAM chains as well as in a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001